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FUNDAMENTAL SOLUTIONS OF THE THEORY OF 

UNIDIRECTIONAL COMPOSITES 

E. A. Lankina and A. M. Mikhailov UDC 539.2 

In the present study, we solve a problem concerning the action of a concentrated force 
in an infinite undirectional composite for the two- and three-dimensional cases. The 
approach that is taken makes it possible to express the solution of the problem of deformation 
by body forces in the form of series and integrals, solve the problem of a loaded half- 
space (half-plane), and asymptotically obtain known solutions on fiber rupture that can be 
employed in crack problems. 

i. We will examine an infinite unidirectional composite in which the fibers form a 
square grid in the section perpendicular to the reinforcement direction z. The period of 
the grid is H + h (the cross-sectional area of the fibers is h2). The numbers of the nodes 
are represented by the subscripts j and k. The dimensionless coordinates along the fibers 

= z/~, while the dimensionless displacement wj, k = Uj,k/~. The displacement satisfies 
the equation [i] 

82wj,h/8~ ~ ~ ~Ai~w = O, --~ < ], k < ~ ,  (i.i) 

AjKW : Wj_I, h ~ Wj,h-1 - -  4Wj, h ~ Wj+l,h ~ Wj,h+l 

and the auxiliary conditions 

crj,u ~ 0,  I~l ~ ~ ,  c~j,~ = Edwj,k/d~; 

dWoo 
[o~1 I~=o E -~ -  ~=+o --  d~~176 = E ~ I~=-o 2Q. 

(1.2) 

(1.3) 

Condition (1.3) gives a jump in the normal stress in the fiber k = j = 0 at the point ~ = 0. 
This corresponds to the application of a concentrated force -2Qh 2 to the fiber. Here, $2 = 
G/E: E and G are the Young's modulus and shear modulus for the fiber and the binder; h and 
H are the width of the fiber and binder. The solution will be sought by means of double dis- 
crete Fourier transformation. Each equation of system (i.i) is multiplied by exp(-ijs) • 
exp(-ikq), --~ J s, q i ~ and summed over j, k within infinite limits. After completing some 
elementary transformations, we arrive at a linear differential equation with constant coeffi- 
cients. The equation is of the second order in $ relative to the double Fourier series: 

w vv = ~ wj,~ (~) exp(- -  ~]s) exp (--  ikq). 
5,h=--oo 

(1.4) 

The solution of (1.4) depends on two arbitrary constants. Although being independent of $, 
these constants generally depend on the parameters s and q. One of them is equal to zero, 
thanks to (1.2). After solving (1.4), we find wj, k from the inversion formula expressing 
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the coefficients of Fourier series (1.4) in terms of its sum: 

I j' j" (s, q)exp(--2~[ ~ IR(~/2, q/2))exp(--is])exp(--iqk)dsdq wj,h (~) = 4n--- ~ c 

(B (s, q) = ]/-sin 2 s -{- sin 2 q). 

(1.s) 

We now differentiate (1.5) at $ + !0. The limiting values of the derivative differ only in 
sign, due to the appearance of the multiplier dI$I/d ~ . They are equal due to the continuity 
of the stresses at $ = 0, (j, k) ~ (0, 0). This means that 

j" J" c (s, q) R (s/2, q/2) exp (--  i]s) exp ( - -  ikq) ds dq = O, (], k) V= (0, 0). ( 1 . 6  ) 

Since all of the Fourier coefficients (1.6) (except for the zeroth coefficient) are equal to 
zero, the function c(s, q)R(s/2, q/2) is a constant. The latter is found using condition 
(1.3). We obtain the displacement for the space from the action of the concentrated force 

- 0 [exp (--  2~ I r l R (s, _, q, 2)):B (s/2, q/2)] • 

x exp ( - -  is~) exp ( - -  iqk) ds dq. 

(1.7) 

Displacement (1.7) approaches zero at j, k + ~, since it is a Fourier coefficient of the 
function being summed. However, it does not approach zero too quickly, since the series of 
the squares of the displacements diverges. To prove this, we will use Parseval's identity 
and assume that the integrand in (1.7) is not quadratically summable. Thus, it has a singu- 
larity of the order i/s 2 + q= at zero. This solution will also be the solution of the prob- 
lem of the half-space $ > 0 loaded on the surface by a force which creates a stress Q in the 
fiber j = k = 0 at $ = 0. To be certain of this, we divide the force into two egual parts 
applied to the upper and lower half-spaces and we assume that the stresses at $ = 0 are equal 
to zero everywhere except for the point (0, 0) (see (1.6)). We use Eq. (1.2) to find the 
stresses 

(~5,h (~) (9sign (~) i i exp(--2[3 [~ I R(s/2, q/2))exp(--i]s)exp(--iqk)ds dq. 4 ~  2 
- - ~  _ . %  

(1.8) 

The following results were obtained from numerical realization of Eqs. (1.7-1.4). Table 1 
shows values of E~wj,k(0)/2Q at nodes adjacent to the point of application of the concentrated 
force. The solution is symmetrical for negative j and k. Figure 1 shows the dependence of 
the stress distribution along the fibers on the action of the concentrated force (lines 1-5 
correspond to j = 0; 0; i; 0; 2 and k = 0; i; i; 2; 2). Let us now proceed to the two-dimen- 
sional case. Here, all of the functions depend on one integral variable j, the expression 
Wj,k+ l - 2wj, k + Wj,k_ l vanishes, and instead of (i.I) we have 

2 w d~w/d~ 2 + ~ ( j+~ - -  2wj + w~_~) = O, (1.9) 

--oo<7< oo. 

Proceeding similarly in the three-dimensional case, instead of (1.5) we obtain the expression 

t I c (s) exp (--  2131 ~ [] sin (s~2) I) exp (--  ijs) ds. ( 1 . 1 0 )  % (~) = 

Finding the function c(s) =-Q/2$Elsin(s/2)[, we see that integral (i.i0) diverges at zero. 
It followed from subsequent analysis that the integral diverges due to formal application 
of the discrete Fourier transform. The quantity wj does not vanish at j § = in the plane 
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TABLE 1 

J 
o ] t I 2 

E~wj,h(O)/2Q 

--0,3221240 
--0,0826046 
--0,04i93i4 

--0,0826046 
--0,0532128 
--0,0355773 

--0,04i93i4 
--0,0355773 
--0,0282115 

o ~oe ~e 4: 

Fig. 1 

case, so that the necessary condition for convergence of the series w F is violated. To 
circumvent this obstacle, we need to examine a formulation of the problem in which the 
solutions will decrease sufficiently rapidly at j + ~. We then take the limit to obtain 
the solution of the initial problem. Here, instead of the problem of a half-plane loaded 
by a force at the boundary, we solve the analogous problem of a strip 0 i ~ J N. At the 
boundary of the strip $ = N, we distribute a stress which balances the load applied at the point $ = 0, 
j = 0. We then take the limit N § ~. In this case, the balancing load approaches zero as 
I/(2N + ~) but occupies the larger region lJl i N, thus maintaining the balance condition. 
With finite N, after discrete Fourier transformation of Eq. (1.9), we arrive at a problem 
in the strip O.i ~ i N: 

d2wF/d~ 2 - -  4~ 2 s in  ~(s/2)w F = O, 

N 

1 ~ d g  ] Q ~N exp(i]s)" dwF = Q' ~-~ '~  = 2 N + i j  
E ~ ~=o ~=N =-- 

Having solved this, we find 

sin (N -~- 1/2) s 
y ( 2 N  @ 1) sin (s/2) (ch (~s) exp (--  i]s) - -  ch s) - -  ch (N - -  ~) s exp (- -  i]s) @ ch (N - -  t) s 

wj (~) ---- ~ ' " I sin (s/2) I sh (Ns) 
ds 

(i.li) 

(s ---- 2~ I sin (S/2)]) The integrand in (i.ii) is bounded at 0. At N + =, we have the solution 
for the half-plane in the form of a convergent integral 

exp (- -  26 1 sin (s/2) D - -  exp, (--  2~; I ~ [ sin (s/2) I) exp (--  iis) ds. 
I sin (s/2) [ 

(1.12) 

Displacement (1.12) vanishes at $ = 1 and, in contrast to the three-dimensional solution 
(1.7), does not approach zero at j, k + ~. The corresponding stresses take the form 
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Fig. 2 

i.~(~)/~ 
1- 

o,6 

i 

@2- 

J.. 2 

-@2. 

Fig. 3 

cs (~) O sign4a (~) f exp ( - -  2~] sin (s,2) [ [ ~ I) exp ( - -  i]s) ds. (1.13) 

Let us return to the three-dimensional case and attempt to find the plane solution sought 
through the superposition of solutions (1.7) for concentrated forces applied at the boundary 
of a half-space at the points of the straight line j = 0. Each force creates the stress Q 
in the fiber to which it is applied. We substitute k - m for k in (1.7) and sum the inte- 
grand over m in infinite limits. Using the expression [2] 

exp ( iqm) = 2~ .6 (q - -  2~n) (1.14) 

(6 is the Dirac delta function), we again arrive at divergent integral (i.i0). The reason 
for the divergence is the slow decrease of displacement (1.7) at infinity. In order to 
obtain Eq. (1.12), we recall that the displacement is determined only to within a constant 
shift along $. Thus, with summation of each finite sum. over m, we will require that, as in 
(1.12) the displacement vanish at $ = i, j = 0, k = 0. Subtracting the corresponding term - 
which is independent of g, j but dependent on N - we again arrive at (1.12) 

N 

u'j (~) = Jim ~_~ ( w j , h - m  (~) - -  Wo,-m (1)) = 
N~oo m~--N 

Q f exp (-- 2~ [ sin (s/2) 1) -- exp (-- 2~ I ~ I I sin (s/2) I ) exp (-- is]) ds 
---- ~ t sin (s/'2) I 

The process by which we obtain (1.12) can be regarded as a reguiarization of divergent inte- 
gral (i.i0). 

Figure 2 shows the stress distibution along fibers with j = 0, i, 2, 3 (lines i[-4). 
Here, a concentrated force -2Qh 2 is applied to the fiber j = k = 0 at the point $ = 0. The 
displacements of the fibers at ~ = 0 are shown in Table 2. 

2. By passing to the limit, we can use the solution of the problem of a concentrated 
force to obtain the solution for fiber rupture. This approach is similar to that which 
leads to the field of a dipole from the fields of two opposite charges. We will apply con" 
centrated forces in opposite directions at the points $ = !e of a fiber j = k = 0. We 
bring the forces closer together while having their magnitudes approach infinity. Thus, 
the "dipole moment" (the product of the force and distance) remains constant. As a result, 
we obtain the following from (1.7) 

l i m  - -  Q 2 e l y ' h ( e ) -  I L k ( - - 8 )  d f  
~ 0  8~E~ 2 2~ = M T~ ~ (0) 
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TABLE 2 

J t wflO) . 
J 

J 
i 

0 I --0,179442 2 
L 

i ] 0,138862 3 

wj(o) 

I 0,244983 
0,308633 

TABLE 3 

/=p=5 I " l=p=9 I /=p=$1 
oj,h(o)/Q 

t,000 --0,t53 
--0,i53 --0,03t 
--0,023 --0,015 

I 
--0,023 ] 1,000 --0,t47 --0,015 
--0,0t5 I --0,t47 --0,025 --0,008 
--0,0t4 "0,0i5 --0,008 --0,004 

1,000 --0,t46 
-2-0,i46 --0,024 
--0,0t4 --0,007 

--0,014 
--0,007 
--0,003 

(lj,k($) is the double integral from (1.7)). We choose the constant M on the basis of the 
condition that the stress in the fiber j = k = 0 is equal to Q. We arrive at the solution 

wj,~ (~) " -- Q sign (~) S ~ exp(--2131 5 IR(s/2, q/2))exp(--is])exp(--iqk)ds dq 
( 2 . 1 )  

(r~,~ (~) = Q ~f ~ exp (--  281 ~ 111 (s/2, q/2)) exp (-- i]s) exp ( -  ikq) • 

• R (s..'2, q/2) ds d R (s/2, q/2) ds dq. 

( 2 . 2 )  

At $ = 0, displacements (2.1) vanish everywhere except in the fiber j = k = 0. 
they undergo a discontinuity 

Woo(+ 0)- -  Woo(-- 0) = - - 4 n  ~ ~E R(s/2, q/2)dsdq . 

The same action in the plane case leads to the solution 

In the fiber, 

O sign (~) ; 
wj (~) 8~E exp (-- 213 1 ~ II sin (s/2) I) exp(--i]s) ds, 

oj ($) = Q ; exp (-- 281 $ II sin (s/2)I) exp (-- i]s) l sin (s/2) lds. 

The displacement jump is equal to -vQ/2$E. Solution (2.1-2.2) was obtained previously by a 
different method [3]. Figure 3 shows curves of the stress change along the fiber with different 
k, j in the three-dimensional (lines 1-3 corresponding to j = 0; 0; 1 and k = o; i; i) and 
two-dimensional (lines 1-3 corresponding to j = 0; i; 2) cases. 

3. Let us examine several special distributions of ruptures in the three-dimensional 
case. If there are several ruptures in a composite, then the superposition principle can be 
used to calculate the stress field. 

A linear combination of the fields of the individual ruptures will obviously yield a 
stress state that satisfies the equilibrium equations. The coefficients of the linear combi- 
nation are determined from the condition that the stresses at each rupture be equal to Q. 

A. At ~ = O, let the ruptures of the fibers form a rectangular grid with the periods p, 
~. Since the ruptures take place under the same conditions, all of the coefficients of the 
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Fig. 4 

linear combination will be equal and the infinite system will become one equation. Thanks 
to (1.14), the integrals in (2.3) reduce to finite sums. Let us determine the stress distri- 
bution in the plane $ = 0: 

~t .p (~,h (0) = Q ~_~ R (a " ,,l, ~] /p) cos  (2nkk'/l) cos (2nj]'/p)/~.~ B (:~k'/l, n]'/p) (3.1) 

(summation is carried out within the limits [k' I J [s lJ'[ ~ [p/2J, the brackets denoting the 

integral part of the number). Table 3 shows values of aj,k(0)/Q (j, k = 0, i, 2) calculated 
from Eq. (3.1). If the fibers are loaded by the stress -Qat infinity and the stresses at 
the ruptures are equal to zero, then unity is subtracted from the numbers in Table 3. The 
effects of the defects on one another turn out to be negligible. The maximum stress concen- 
tration is seen in the fibers closest to a rupture. For the period p = ~ = 9, the overload 
nearly coincides with the situation of a double rupture and amounts to 14.7%. 

B. Let the fiber ruptures be located at the nodes of a three-dimensional grid with the 
periods p, s L (L is the period along the fibers). The corresponding plane problem was 
examined in [4]. Proceeding as in case A, we obtain the stress 

oj.k (r 
E R (r~k'/l, r~j'/p) cos (2rckk'/l) cos (2rtly/p) ~ exp(--2~R(nk'/'l, rcj'/p) I nL -- ~ I) 

~, R (nk'/l, g/'/p) c th  (~LR (~M /l, ~I'/P) 

(summation is performed over k', j' as in (3.1)). The results of the calculations show that 
there is a shielding effect: the stresses decrease compared to the case L = ~. The maximum 
overload on the fibers in the plane $ = 0 is equal to 12% at p = s = L = 5 and 14% at p = s = 
L = 9. 

C. If two ruptures are located at the points (0, O, O) and (s p, L), the stress at 
the point (k, j, $) has the form 

oi,k (~) -~t~ --~R(s/2' q/2)[exp(--2~l$--LIR(s/2 , q/2))exp(isp)exp(iql)-+-exp(--2~ 1~1R(s/2, q/2))] exp ( - -  ~ (is -4- kq)) ds dq 

Q 
S R (s/2, q/2) [l  ~- exp (-- 2~ I L I R (s/2, q/2)) exp (-- isp) exp (-- ilq)] ds dq 

If both ruptures lie in the same plane (L = 0) next to one another (p = i, s = 0), then the 
maximum stress is reached at the point (j, k) = (i, i) and is equal to 0.2002. If the compo- 
site is subjected to tension at infinity, then the stress concentration reaches 1.2002. The 
most dangerous situation is when the location of the ruptures corresponds to p = 2, s = 0. 
In the fiber lying between the ruptures, the stress concentration in tension at infinity is 
1.29. 

D. Let us now examine a square crack lying within the plane $ = 0, -N i J, k ~] N. The 
composite is subjected to tension at infinity. The maximum stresses are reached on a continua- 
tion of the axes of symmetry of the square parallel to the sides at the points closest to the 
contour of the square. Figure 4 shows the stresses in the fibers directly adjacent to the 
side of a square crack for N = 3, 2, i (lines 1-3). For greater clarity, the points belonging 
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TABLE 4 

--F---" 
1 , 1 2 1 3  

wj,h(o) 

--i ,0160 
--0,i244 
--0,0263 

i,Oi60 [0,i72410,0608 
0,i244 10,074310,0415 
0,02~ jo,029 jo,02,9 

TABLE 5 

Number of 
ruptured v 
fibers 

t x l  t 
3x 3 2,66 
5x5 4,24 
7x7 5,8 
9X9 7,3 

TABLE 6 

Number of 
ruptured v 
fibers 

i i 
3 2,8 
5 4,7 
7 6,6 

50 39,2 

to each case are joined by straight lines. Since the stresses are symmetrical, we have 
shown only the right sides of the graphs. The maximum stress concentrations are equal to 
1.98, 1.73, 1.46, and 1.15 at N = 3, 2, i, and 0 (single rupture). The corresponding maxi- 
mum dimensionless displacements, multiplied by SE/2Qv 2, are as follows: 2.16, 1.57, 0.99, 
0.42. 

4. Using the fundamental solutions in Part i, we will solve the problem of a force 
couple formed by two equal (in terms of modulus) concentrated but oppositely directed forces 
applied to adjacent fibers at $ = 0. This solution was obtained by a different method in [i]. 
We will examine the plane case first. Let a concentrated force causing stress jump 2Q 
in a fiber be applied at the point j = 0, $ = 0, and let another concentrated force of the 
opposite sign be applied at j = i, ~ = 0. This produces a moment of forces acting in the 
counterclockwise direction. Using (i.12,1.13), we obtain the displacements and stresses 
from the couple: 

~/2 

u,j (~) = - ~  S sin (2j - -  i) s exp (-- 2~ I ~ I sin s) ds. 
o 

In particular, at ~=0, w j(0) = Q/~SE(2j - i), the displacement difference 6w 0 = w1(0) - 
w0(0) = 2Q/vSE, 

~/2 
2Q sign (~) 

J s i n ( t -  2j)sexp (--2~]~]sins)ds. (4.1) oi (~) Z sin s 
o 

At ~ = 0, stresses (4.1) are equal to zero at all j except for j = 0, i. We can use (1.7- 
1.8) to find the displacements and stresses in the three-dimensional case from the action of 
a pair of forces applied at the points j = 0, k = 0, and j = I, k = 0: 

oj,~, (~) 

~,/2 ~/2 
40 

wj,h ($) = ~ f f [cos (2kq) sin s sin (2] - -  i) s exp (-- 2~1 ~lX 
o o 

X R(s, q))/B (s, q)] ds dq, 
~/2 .~/2 

8Q sig. (~) S ~ cos (2~k) sin s sin (i -- 2])sexp(--2~l  ~] R(s, q)) dsdq. 
0 0 

As in the two-dimensional case, the stresses at ~ = 0 are nontrivial only in the fibers to 
which the forces are applied. Table 4 shows the displacements at $ = 0 in the fibers closest 
to the couple. With negative values of the indices, the displacements are continued along 
the symmetry axis. 

5. The system of equations which describes the displacements of the edges of a square 
crack in a composite (see D in 9art 3) has one shortcoming: the conditionality of the 
system deteiorates with an increase in the dimensions of the crack. As an illustration, we 
determine the ratio v of the maximum and minimum (with respect to modulus) eigenvalues of the 
matrix formed in the solution of the problem of a square nomeml-rupture crack loaded by a 
constant stress (see D in Part 3). Tables 5 and 6 show the results for the three- and two- 
dimensional cases. The conditionality number v increases roughly in proportion to crack size. 
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This becomes particularly evident in the solution of the problem of an infinite layer loaded 
by a constant stress at the boundaries. If the ends of the fibers exceeding the boundary 
are regarded as points of rupture of fibers of equal intensity in an infinite medium, then 
we can sum the stresses from all of the elementary ruptures to obtain a zero stress at each 
point of the layer. This result becomes obvious if we recall that the solution for a single 
rupture is self-balanced. Thus, the stresses at the boundary of the layer are equal to zero, 
while the solution of the corresponding system (the intensity of the ruptures) is nontrivial. 
As a result, the system of equations becomes indeterminate with the transition to an infinite 
region. The author of [i] used fundamental solutions to obtain a system of integral and alge- 
braic equations describing the stress state of a composite having fiber ruptures and binder 
delaminationso Here, the boundaries of the composite that were perpendicular to the fibers 
were regarded as fiber ruptures in an infinitely large specimen. In connection with the 
deterioration in the conditionality of the system with an increase in the number of equa- 
tions, it is best to satify the conditions in stresses on the external boundaries perpendicu- 
lar to the fibers by means of the fundamental solution on the concentrated force, while 
fundamental solution (2.1-2.2) is used to satisfy the conditions for the internal ruptures. 
As an illustration of this , let us again examine the problem of a uniformly leaded layer. 
Here, it will suffice to apply concentrated forces ensuring the required stress to the 
ends of each fiber which exceed the boundaries. As a result, the entire layer turns out to 
be balanced. In this case, the infinite system decomposes into separate unidimensional equa- 
tions and v turns out to have a value of one. In all of the numerical calculations, $ = 
~2/~. 
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